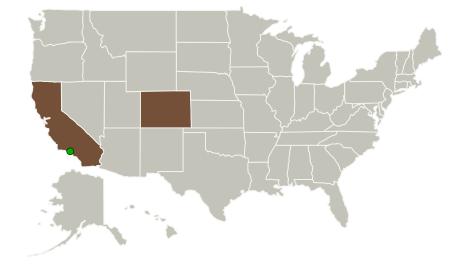
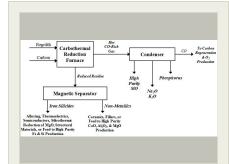
Extraterrestrial Metals Processing, Phase I


Completed Technology Project (2016 - 2016)



Project Introduction

The Extraterrestrial Metals Processing (EMP) system produces ferrosilicon, silicon monoxide, a glassy mixed oxide slag, and smaller amounts of alkali earth compounds, phosphorus, sulfur, and halogens from Mars, Moon, and asteroid regolith by carbothermal reduction. These materials, in some cases after further processing with other in-situ resources, are used for production of high-purity iron and magnesium metals (for structural applications), high purity silicon (for photovoltaics and semiconductors), high purity silica (for clear glass), refractory ceramics (for insulation, thermal processing consumables, and construction materials), and fertilizer (from phosphorus recovered from carbothermal reduction exhaust gases). Carbothermal reduction also co-produces oxygen at yields on the order of 20 percent of regolith feed mass when integrating downstream processes to recover and recycle carbon. Many of the EMP products can be prepared in a fashion suitable for casting or additive manufacture methods and have broad application in support of advanced human space exploration. The EMP methods are based on minimal reliance on Earth-based consumables; nearly all of the gases and reagents required for processing can be manufactured from Mars in-situ resources or can be recovered and recycled for applications using Moon or asteroid resources.

Primary U.S. Work Locations and Key Partners

Extraterrestrial Metals Processing, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Extraterrestrial Metals Processing, Phase I

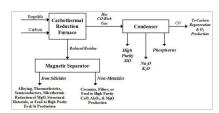
Organizations Performing Work	Role	Туре	Location
Pioneer Astronautics	Lead Organization	Industry Historically Underutilized Business Zones (HUBZones)	Lakewood, Colorado
● Jet Propulsion Laboratory(JPL)	Supporting Organization	NASA Center	Pasadena, California

Primary U.S. Work Locations	
California	Colorado

Project Transitions

O

June 2016: Project Start



December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139911)

Images

Briefing Chart Image

Extraterrestrial Metals Processing, Phase I (https://techport.nasa.gov/imag e/136382)

Final Summary Chart Image

Extraterrestrial Metals Processing, Phase I Project Image (https://techport.nasa.gov/imag e/128207)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Pioneer Astronautics

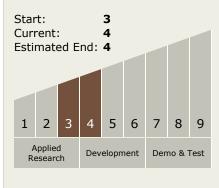
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Mark Berggren

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Extraterrestrial Metals Processing, Phase I

Technology Areas

Primary:

- TX07 Exploration Destination Systems
 - ☐ TX07.1 In-Situ Resource Utilization
 - └─ TX07.1.4 Resource
 Processing for
 Production of
 Manufacturing,
 Construction, and
 Energy Storage
 Feedstock Materials

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

